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SUMMARY 
A systematic study has been conducted to assess the performance of the TVD schemes for practical flow 
computation. The viewpoint adopted here is to treat the TVD schemes as a combination of the standard 
central difference scheme with numerical dissipation terms. The controlled amount of numerical dissipation 
modifies the computed fluxes to ensure that the solution is oscillation-free. Four variants of TVD schemes, 
two with upwind dissipation terms and two with symmetric dissipation terms, have been studied and 
compared with the conventional Beam-Warming scheme for inviscid and turbulent axisymmetric flow 
computations. The results obtained show that all four variants can accurately resolve the shock and flow 
profiles with fewer grid points than the Beam-Warming scheme. The convergence rates of the TVD schemes 
are also substantially superior to that of the Beam-Warming scheme. The combination of high accuracy, 
good robustness and improved computational efficiency offered by the TVD schemes makes them attractive 
for computing high-speed flow with shocks. In terms of the relative performances it is found that the 
symmetric schemes converge slightly faster but that the upwind schemes are less sensitive to the number of 
grid points being employed. 
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1. INTRODUCTION 

Recently, a number of new techniques for constructing non-linear, high-resolution shock- 
capturing schemes for systems of hyperbolic conservation laws have been developed.'-'' These 
schemes, characterized by the total-variation-diminishing (TVD) property, are free from gener- 
ating spurious oscillations across the regions of sharp flow profile such as shocks and contact 
discontinuities, and can converge to physically realizable solutions with the aid of entropy 
correction. In the region of smoothly varying solutions the TVD schemes can also maintain a 
high degree of numerical accuracy. 

The TVD concept was first proposed by Harten3 who also developed a simple algebraic 
criterion for constructing first-order-accurate TVD schemes. He then added a limited antidiffu- 
sive flux to a first-order-accurate entropy-satisfying scheme to obtain the second-order-accurate 
TVD schemes. This technique is referred as the 'modified flux approach'. The modified flux is 
devised so that the scheme is second-order-accurate in the smooth region and will switch itself t o  
first-order accuracy in the vicinity of points of extrema. Harten4 also extended a class of explicit 
TVD schemes to a more general category which includes a one-parameter family of implicit 
second-order TVD schemes. More recently, Harten's TVD scheme was modified and generalized 
by Yee et al." and implemented to solve the two-dimensional Euler equations of gasdynamics for 
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the aerofoil problem. The numerical results indicate that Harten’s scheme is both robust and 
accurate. 

Van LeerS adopted an approach originally developed by Godunov,” who used a control 
volume concept to ensure the numerical scheme to be conservative and therefore dealt with 
averaged values instead of nodal values in each finite volume. Van Leer observed that it is 
beneficial to work with averaged gradients in addition to averaged values, i.e. one can obtain 
second-order accuracy by replacing the piecewise-constant initial data of the Riemann problem of 
Godunov’s scheme with the piecewise-linear initial data. The slope of the piecewise-linear initial 
data is selected so that spurious oscillations will be prevented. Colella and Woodward6 further 
refined van Leer’s idea by using piecewise-parabolic initial data and have obtained remarkably 
good numerical solutions. 

has developed a numerical fluctuation approach for computing the numerical 
solution of both scalar and systems of hyperbolic conservation laws. His approach combines a 
novel interpretation of difference schemes with higher-order accuracy and monotonicity pre- 
servation and also incorporates these properties into an approximate Riemann solver for 
hyperbolic systems. The average function is constructed by the use of flux limiters. Using this 
approach, Roe has obtained solutions with crisp shock free from the spurious oscillations. 
Unfortunately, Roe’s scheme may also admit a non-physical (entropy-violating) solution, i.e. 
expansion shock. Various remedies have been proposed to cure this problem.’ ’-I7 

Osher has constructed a scheme” based on an approximate Riemann solver, with the use of 
compression and rarefaction waves to approximate shocks. The numerical flux functions, which 
are at least continuously differentiable, are written in closed form and include various switches 
which make the numerical flux functions upwind, and the numerical solutions satisfy the entropy 
condition. It is observed that Osher’s scheme require more operations than Harten’s or van Leer’s 
scheme. 

Davis” showed that a certain class of TVD schemes can be interpreted as a Lax-Wendroff 
scheme plus an upwind-weighted conservative numerical dissipation term. He then simplified the 
scheme by eliminating the upwind weight of this numerical dissipation term and also ensured that 
the simplified scheme still possesses the TVD properties. Roe” reformulated Davis’s scheme to 
make it easier to analyse. He also formulated a class of TVD schemes not obtained by Davis. Yeeg 
then generalized Roe’s schemes to a one-parameter family of second-order explicit and implicit 
TVD schemes. Therefore the formulation of Roe and Davis’s scheme can simply be viewed as 
special cases of Yee’s explicit symmetric TVD schemes. 

In the present study, several of the aforementioned TVD schemes are analysed and compared 
in the context of practical flow computation. The viewpoint of interpreting the TVD scheme as a 
modified flux is adopted here in order to make the task of actual implementation of several 
different schemes more tractable. One can modify a standard three-point central difference code 
such as the Beam-Warming algorithm” by simply changing the conventional dissipation terms 
into the one designed for the TVD schemes. Hence the only difference in computation is that the 
TVD scheme requires more elaborate dissipation terms or flux limiters. 

An extended derivation of the TVD schemes in three-dimensional generalized curvilinear co- 
ordinates has been presented in Reference 23. This formula has been applied to achal flow 
computations by incorporating it into a time-dependent axisymmetric Navier-Stokes formula- 
tion based on the Beam-Warming scheme. Both inviscid and turbulent flows over the axisym- 
metric secant-ogiveecylinder-boat-tailed (SOCBT) projectile with string at zero angle of attack 
have been computed. The goal is to assess the performance of the TVD schemes in terms of 
numerical accuracy, robustness and convergence rate. Four variants of the TVD scheme have 
been investigated in the present study, namely two upwind schemes with flux limiters proposed by 
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van Leer' and Roe2 respectively, and two symmetric schemes originally developed by Roe and 
Davis and later extended by Yee.' 

2. GOVERNING EQUATIONS AND NUMERICAL ALGORITHM 

The azimuthal-invariant thin layer Navier-Stokes equations in general curvilinear co- 
o r d i n a t e ~ ~ ~ , ~ '  can be written as 

Here 

a4 ai aG 1 as  ̂ - 
aT a t  a i  Re a( 
-+-+- = -- + H ,  

P 

e 

and 

In1 = P(i2 + rl)? 
m3 = (u' + u2 + wZ)</2  + p P r - ' ( y -  1 ) - ' ( ~ ' ) ~ ,  

u = i", + 5,u + L w ,  

m2 = ( d 3 )  ( L U <  + L W < h  

V = ?I + q y u ,  w = i, + i xu  + i z w ,  

where p ,  u, v, w, p and e are the density, velocity components along the x-, y- and z-directions, 
static pressure and total energy respectively; p, y ,  c and Pr are the dynamic viscosity, ratio of 
specific heats, speed of sound and Prandtl number respectively. The co-ordinate transformation 
between ( x , y ,  z)  and ( t , q ,  [) is made with U ,  V and W being the contravariant velocity 
components. 

In order to highlight the influence of the TVD schemes on the numerical algorithm, the widely 
adopted Beam-Warming scheme2' is used as the base method. In the present framework the 
major difference between the Beam-Warming scheme and the TVD schemes can be interpreted in 
terms of the dissipation mechanism. The Beam-Warming scheme is a non-iterative approximate 
factorization implicit algorithm. The finite difference equation resulting from the Beam-Warming 
scheme for approximating equation (1) can be expressed as 

(2) LsLc[A(i"]  = -At(S,E^" + S,Gn - Re- 'S,S^. + H " )  - D,, 
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with the linear operators L, and L, defined as 

L, = [ I  + A t 6 , i " -  DiJ,], 

L, = [ I  +At6 idn-AtRe-L6 ,J - 'M"J-Di l s ] ,  
(3) 

(4) 
where the explicit fourth-order dissipation is 

D, = E,AtJ-' [(AtV,)' + (A"Q,)'] J ( 5 )  

and the implicit second-order dissipation terms are 

Dil, = EiAtJ- l (AV) ,J ,  

DJ,  = EiAtJ- l (AV) iJ .  

Here 6 is a standard three-point second-order-accurate central difference operator, A and V are 
forward and backward-difference operators respectively and J is the Jacobian of the co-ordinate 
transformations. The Jacobian matrices i, d and fi result from the linearization of the flux 
vectors l?, 6 and s  ̂ respectively, i.e. Â  = dE^/@, d = 86/84 and 6 = as^/@. The parameters ci 
and E, are chosen such that E~ 2 26,. Specifically, the dissipation terms due to the Beam-Warming 
scheme in equations (5H7) can now be replaced by the following expressions: 

(8) 

DilC = -- :At(nS+1/2,k-SZS-1/2,k) ,  (9) 

D i l <  = -3At(Zl!,k+lj2 -n!,k-l/2), (10) 

D e = - _  ~ A ~ ( R i + ~ / 2 @ i + l / Z - R i - l / 2 @ i - l / 2  + R k + 1 / 2 @ k + 1 / 2 -  Rk-l/2@k-l/Z) 

and 

where R, = ( R l ,  R f ,  R:, R g ,  R ; )  and R ,  = (Rf, K:, R : ,  R: ,  R,?), the matrices whose columns 
are eigenvectors of Â  and &. are defined as 

R ,  = 

i ,  U 

K x v  + r2,p 

r2, w - Kyp 

KY 

Kyu - K,p 

iy O 

i y w  + K,p 

r;-,qz/2 + p ( i , w  - K,U) 

with K = 5 ,  q or [ and R i + l i 2  denoting R ,  evaluated at q i + l / 2 , k ,  
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where 

rl, = K , / ( K , 2  + K,’ + K , 2 ) ” 2 ,  

bl = b2(q2/2), 

KY = K , / ( K :  + K,’ + K , 2 ) ’ / 2 ,  

q 2  = u2 + Y2 + w2, 
b2 = ( Y  - 1 ) / c ,  

II, = K , / ( K f  + K,’ + K , 2 ) 1 / 2 ,  

c = (YP/P)”’ .  

- 
8 = + rlYu + i Z w ,  H = c ’ / ( Y -  1) + q2/2, 

The elements of @ i + l i 2  denoted by ( @ ‘ f + l i 2 ) U  for a second-order upwind TVD scheme, 
originally developed by Harten3 and later modified and generalized by Yee et a/.,* are 

(4ft l ,2)u  = 44+ 1/21 (si+ 1 - sf, - $(a;+ 1/2 + Yf+ &+ 112. 

a ( z ) = t + ( z )  

(13) 
Here 

and the coefficient of numerical viscosity can be slightly modified as 

where E is a small positive parameter. 
The function y is defined as 

The characteristic variables ai+ 1,2 ,k  and a i , k +  l j2  can be expressed as 

1 R i ? l / 2  ( q i , k + l  - q i , k )  
a k + 1 / 2  = 1 

T ( J i , k + l  + Ji ,k)  ’ 

The symbol gt represents the ‘flux limiter’, which has been proposed to be of the following forms. 

(i) Harten’s flux limiter:3 

gf  = minmod (af_1/2,  ~ l f + ~ / ~ ) ,  (144 
where the minmod function of two arguments is defined as 

minmod (x, y )  = sgn(x) max { 0, min[ Ix I, y sgn(x)] } . 
(ii) Van Leer’s flux limiter? 

g. = (a !  1 
L t+1 ,2af -1 ,2  +tai+1/z ~ f - , / z l ) / ( “ f + l / 2 + ~ f - 1 / 2 ) .  

(iii) Roe’s flux limiter:’ 

g f  = SmaxLO, min (21o l f+ ,~~1 ,  ~ a f - ~ / ~ ) , m i n ( I a f ~ , / 2 1 , 2 S a f - 1 / 2 ) 1 ,  (14c) 
with 

S = sign ( ~ l f + , / ~ ) .  

Flux limiter (14c) is found to produce the most compressive, i.e. stiff, profile among the three 
limiters. Limiter (14b) is found to produce better shock resolution than (14a).9 
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The elements of denoted by (4f+l,z)s for a general second-order symmetric TVD 
scheme’ are 

(4f+l,2)S = - $ ( 4 + 1 / 2 )  “ f + l / Z  - Q f + 1 , 2 1 .  

Again Qi+ 1,2 is the flux limiter, which can be either of the following forms, for example. 

(iv) Davis’s flux limiter:” 

Q f + l / z  = minmod(a~-1/2, a f+1/2)  + minmod(ccf+1/2, c c f + l j z ) - c c f + 1 , 2 .  

Q r  + 112 = minmodC2af - 112, 2 d +  112 9 2@f+l/2 3 %Xf - 1 / 2  + af + 1/2)].  

(164 
(v) Yee-Roe-Davis’s f l u ~ . l i m i t e r : ~ . ~ ~  

(1 6b) 
Limiter (16b) is more compressive than limiter ( 16a).9 

Finally, f25+112,k and f2$,,+,,, in equations (9) and (10) can be expressed as 

r 1 

r 1 

In the present work, four different limiters, two upwind schemes and two symmetric schemes, 
have been adopted to study the performance of the TVD schemes. The two upwind TVD schemes 
are one proposed by van Leer, as shown in equation (14b), and the other a combination of van 
Leer’s limiter, equation (14b) for the non-linear characteristic field and of Roe’s limiter, 
equation (14c), for the linear characteristic field. The two symmetric limiters are those expressed 
in equations (16a) and (1 6b). 

3. NUMERICAL RESULTS AND DISCUSSION 

The transonic flow over the axisymmetric SOCBT projectile with sting at zero angle of attack 
with M ,  = 0.96 and 1.2 are used as test cases. The projectile model used in the computation is 
shown in Figure l(a) and consists of three-calibre for the secant-ogive part, two-calibre for the 
cylinder part and one-calibre, 7” for the boat-tail part, which is further extended for another 1.77 
calibre to meet straight sting. Both turbulent and inviscid flows have been computed to contrast 
the solutions yielded by different numerical schemes on the one hand and to compare the 
difference between the inviscid and turbulent flows on the other hand. The differences in 
convergence rates of the various schemes and flow regimes will also be studied. The 
Baldwin-Lomax algebraic mixing length modelz7 has been adopted here as the turbulence 
closure. 

A 90 x 60 ‘C-type’ grid system was generated using a hyperbolic solverz8 as shown in 
Figure l(b). An expanded view of the grid near the projectile is shown in Figure l(c). The grid 
points are clustered near the ogive-cylinder and cylinder-boat-tail junctions in the streamwise 
(5-) direction. In the cross-stream direction, i.e. the [-direction, the grid points are exponentially 
clustered near the body surface with a minimum spacing of 2 x lo-’ diameters to resolve the 
viscous sublayer. In order to isolate the factors contributing to the change of numerical solutions, 
identical grid systems will be used for both turbulent and inviscid flows. 



f 

Figure I(a). Configuration of the secant-ogivesylinder-boat-tail (SOCBT) projectile 

Figure l(b). A 90 x 60 'C' grid system for the SOCBT projectile 

Figure l(c). Expanded view of the grid distribution near the projectile 
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3.1. M ,  = 0.96 

Figure 2 shows the steady state solutions of surface pressure coefficient C, and Mach contours 
of inviscid as well as turbulent flows calculated by the Beam-Warming scheme. In Figure 2(a) the 
open symbols indicate the wind tunnel experimental data obtained by Kayser and Whiton’’ 
while the solid and dotted lines represent the numerical solutions of the turbulent and inviscid 
flows respectively. Corresponding results obtained by the TVD schemes are presented in Figures 
3-6. After inspecting the results obtained by the various numerical schemes, the following 
observations can be made. 

With the size and distribution of the present grid system, the pressure coefficients along the 
projectile predicted by all schemes agree closely with each other for both the turbulent and 
inviscid flows. 

(ii) There are visible differences in the predicted pressure coefficients between the turbulent 
flow and the inviscid flow. The pressure coefficient in the inviscid flow invariably depicts 
steeper slopes than that of the turbulent flow. This behaviour is expected since the viscous 
effects smear out the sharp variations of the flow field. The inviscid solutions are able to 
agree more closely with a peak value of experimental measurement located in the shock 
region above the middle of the cylinder segment. However, the turbulent results agree 
substantially better in the region of the second shock, where the inviscid solutions show too 
steep a profile. The difference is most likely caused by the interaction of shock and 
turbulent boundary layer which, as demonstrated in the Mach contours, modifies the 
effective wall contours, especially in the region after the second shock. 

(iii) Although the agreements among the numerical results obtained by the various schemes are 
very good for the surface pressure coefficient, differences exist in terms of the detailed flow 
field, as demonstrated by the Mach contours. The flow field predicted by the Beam and 
Warming scheme is much more smeared than those by the TVD schemes because of the 
larger amount of numerical dissipation being introduced into the discrete equations. 

(iv) With regard to the performance of the TVD schemes, they all yield essentially identical 
results. Overall, excellent agreements have been observed among all the TVD schemes with 
the present grid system. Only Davis’s symmetric scheme, i.e. equation (16a), shows some 
discrepancies between the experimental and predicted values of C, in the region before the 
first shock. Figure 7 compares the convergence rates among the Beam-Warming scheme 
and the four TVD schemes for both the inviscid and turbulent flows with the grid system 
shown in Figure 1. 

(i) 

The following comments can be made with respect to the relative performances of the schemes 
under study. 

(i) As expected, the convergence rates of the inviscid flow calculations are faster than those of 
the turbulent calculations for all the schemes. 

(ii) The Beam-Warming scheme shows considerably slower convergence rates than all the 
TVD schemes for both the inviscid and turbulent flows. In the present formulation the 
CPU time per iteration required by the Beam-Warming scheme is a little shorter than the 
TVD schemes, ranging from 15% to 30%. By combining the performance of convergence 
rate and CPU time requirement per iteration, however, it is clear that all four variants of 
the TVD scheme are superior to the Beam-Warming scheme in terms of overall com- 
putational efficiency. 

(iii) Among the TVD schemes, the two symmetric limiters show both faster convergence rates 
and less CPU time requirements per iteration than the upwind schemes. It was found that 



TVD SCHEMES FOR FLOW COMPUTATION 

0.40 
o experimental data 

inviscid case 
0.18 viscous case 

-0.04 

cp-0.26 

-0.48 
Y 

-0.70 
1 14 28 42 56 ’ 

x/ D 
(a) pressure coefficients. 
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(c) Mach contours of turbulent flow. 

Figure 2. Solutions of inviscid and turbulent flows computed by Beam-Warming scheme for M ,  = 0.96 using 90 x 60 
grids 
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(a) pressure coefficients. 
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(b) Mach contours of inviscid flow. (b) Mach contours of inviscid flow. 
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(c) Mach contours of turbulent flow. 

Figure 3. Solutions of inviscid and turbulent flows 
computed by TVD scheme with van Leer's upwind 

limiter for M ,  =0.96 using 90 x 60 grids 

( c )  Mach contours of turbulent flow. 

Figure 4. Solutions of inviscid and turbulent flows 
computed by TVD scheme with van Leer's and Roe's 
combined limiter for M ,  =0.96 using 90 x 60 grids 
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Figure 5. Solutions of inviscid and turbulent flows 
computed by TVD scheme with Davis’s symmetric 

limiter for M ,  =0.96 using 90 x 60 grids 

(c) Mach contours of turbulent flow. 

Figure 6. Solutions of inviscid and turbulent flows 
computed by TVD scheme with Yee-Roe-Davis’s 
symmetric limiter for M ,  = 0 9 6  using 90 x 60 grids 
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Figure 7. Convergence histories of Beam-Warning scheme and four TVD schemes for M ,  = 0.96 with 90 x 60 grids 

both symmetric TVD schemes require about the same amount of CPU time for the present 
calculations. Their CPU time requirement is about 10% less than that of the van Leer 
scheme and about 15% less than that of the combined van Leer-Roe scheme. Hence the 
symmetric TVD schemes appear more attractive for the flows with the present grid system. 

It should also be emphasized that another advantage of the TVD schemes is that a user does 
not have to resort to empirical rules to choose the dissipation parameters. In the Beam-Warming 
scheme the proper choices of the free parameters such as zi and E ,  are not always clear; a trial-and- 
error approach is usually needed in order to compromise the numerical stability and accuracy. 
On the other hand, the TVD schemes do not need any free parameters in determining the 
desirable numerical dissipation. 
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In order to investigate the effects of the grid distribution on the performances of various 
schemes, the number of grid points along the transverse ([-) direction is reduced from 60 to 40. 
The solutions obtained by all four TVD schemes are again essentially the same. Figures 8 and 9 
compare the pressure coefficients and Mach contours of the turbulent case predicted by the 
Beam-Warming and the van Leer limiter respectively on the 90 x 40 grid system. The 
Beam-Warming scheme fails to capture the shock adequately and its accuracy is much inferior to 
the results obtained using the TVD scheme. The TVD schemes produce indistinguishable results 
on both the 90 x 60 and 90 x 40 grid systems. The capability of the TVD schemes to accurately 
resolve the fast variations of the flow field is thus clearly demonstrated through the grid reduction 
procedure. 

To compare the performances among the four limiters of the TVD scheme under study, it was 
decided to further reduce the number of grid points to 70 x 40. The pressure coefficients and 
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Figure 8. Solutions of turbulent flow computed by 
Beam-Warming scheme for M ,  =0.96 with 90 x 40 

grids 

(c) Mach contours of turbulent flow. 

Figure 9. Solutions computed by TVD scheme with 
van Leer's limiter for M ,  =0.96 using 90 x 40 grids 
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Mach contours of the turbulent flow predicted by the four TVD schemes on this grid system are 
compared in Figure 10. Qualitatively similar results are observed for all four TVD schemes. 
However, it is also noticeable that the two upwind schemes are abIe to yield slightly better 
agreements between the prediction and the measurement in terms of the pressure coefficient. The 
symmetric version with a more diffusive limiter, equation (16a), shows the largest discrepancies 
compared to the measurement. This trend indicates that the two upwind TVD schemes are more 
grid-insensitive than the symmetric schemes. 

3.2. M ,  = 1.2 

In this case, as the Mach number is increased from M ,  = 0.96 to 1.2, a weak oblique shock 
forms at  the nose of the projectile. 

Computations on a 70 x 40 grid system have been conducted for both inviscid and turbulent 
flows. Figure 11 shows that the computed pressure coefficients using all four TVD schemes are in 
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excellent agreement with the measurement. For the present flow, no noticeable differences have 
been identified between the inviscid and turbulent flows for the pressure coefficient. This 
phenomenon can be largely attributed to the fact that a weak shock forms at the nose of the 
projectile. Hence, unlike the case of M ,  = 0.96 where the shock/boundary layer interaction can 
substantially modify the wall pressure distribution, the present case is relatively insensitive to the 
viscous effects. Finally, Figure 12 compares the convergence rates for both the inviscid and 
turbulent flows. The results are not the same as in the case of M ,  = 096. First, the convergence 
rates yielded by the same TVD scheme for both the inviscid and turbulent flows are also very 
close owing to the relatively small effects of the viscosity. Although all four limiters of the TVD 
scheme show very comparable convergence rates, the symmetric TVD scheme of Yee-Roe-Davis 
limiter shows a much higher level of persistent residuals. The other symmetric scheme also shows a 
somewhat higher level of residuals than the two upwind schemes. The higher levels of residuals are 
very tolerable here in view of the fact that the solutions predicted by the different schemes are very 
close. Nevertheless, further investigations are needed to identify and to resolve the difficulty of the 
symmetric TVD schemes in terms of residual reduction, since it may become more critical for flow 
of higher incoming Mach number. 

4. CONCLUDING REMARKS 

A thin layer Navier-Stokes flow code based on the conventional Beam-Warming scheme has 
been modified to facilitate the adoption of TVD schemes. Four variants of the TVD scheme, 
namely two upwind flux limiters proposed by van Leer and by Roe and two symmetric flux 
limiters proposed by Davis and by Yee-Roe-Davis, have been adopted. The results obtained 
show that all four variants can accurately resolve the shock and flow profiles with fewer grid 
points than the Beam-Warming scheme. Furthermore, although the computing cost of the TVD 
schemes are higher than the Beam-Warming scheme for each time step, the higher convergence 
rates of these schemes make them computationally efficient overall. The combination of high 
accuracy, good robustness and improved computational efficiency offered by the TVD schemes 
makes them extremely attractive for computing high-speed flow with shocks. In terms of the 
relative performances, it is found that for the transonic flow the symmetric schemes converge 
slightly faster but that the upwind schemes are less sensitive to the number of grid points being 
employed. 
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